If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905t^2+39t-125=0
a = 4.905; b = 39; c = -125;
Δ = b2-4ac
Δ = 392-4·4.905·(-125)
Δ = 3973.5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-\sqrt{3973.5}}{2*4.905}=\frac{-39-\sqrt{3973.5}}{9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+\sqrt{3973.5}}{2*4.905}=\frac{-39+\sqrt{3973.5}}{9.81} $
| 2^(3x-4)+174=206 | | |2x+6|=6 | | 4.905t^2+39t+125=0 | | 2^3x-4+174=206 | | 11=-4y | | 3x+64=3 | | 5+5x=300 | | 4.3+20=5.3y+9 | | X=3/6y-1 | | 2^(x-2)+4(5^{x-5})=132 | | |x+7|=0 | | -8x^2+96x=-40 | | 11x-32=22x=34 | | -8+n/6=-10 | | 32x8=2 | | x+0.22x=29.41 | | 5x+7=63-9x | | 2(4p-2)=3(p+2) | | -3x+1=7 | | m10+8=-92 | | -9+2p=11 | | -81=7x+2x | | 12=3m+(-18) | | x2+2x=13 | | 4.9t^2+4t=50 | | 2000=5x+3x | | -3k+4=-2-6 | | 24.5x-4.9x^2+29.4=0 | | 24.5x+-4.9x2=29.4 | | 2x=x/18 | | (11-5)•x+13-8=29 | | (x-5)*(x-5)=9 |